Câu hỏi
17/12/2024 19Xét hình trụ có bán kính đáy R, có trục là trục hoành Ox, nằm giữa hai mặt phẳng x = a và x = b (a < b) (H.4.20).
a) Tính thể tích V của hình trụ.
b) Tính diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x (a ≤ x ≤ b). Từ đó tính và so sánh với V.

Câu hỏi thuộc đề thi
Danh mục liên quan
Lời giải của Vua Trắc Nghiệm
a) Độ dài chiều cao hình trụ là: h = b – a.
Thể tích của hình trụ là: V = πR2h = πR2(b – a).
b) Diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox là
S(x) = πR2.
Ta có \(\int\limits_a^b {S\left( x \right)} dx\)\[ = \int\limits_a^b {\pi {R^2}} dx\]\[ = \left. {\left( {\pi {R^2}x} \right)} \right|_a^b\]\[ = \pi {R^2}\left( {b – a} \right)\].
Do đó \(V = \int\limits_a^b {S\left( x \right)} dx\).
Câu hỏi liên quan
Xin chào các bạn học sinh tại Vuatracnghiem.edu.vn!
Website được tạo ra nhằm mục đích hỗ trợ các bạn học sinh ôn thi trắc nghiệm hoàn toàn miễn phí, chúng mình không thu bất kỳ chi phí nào. Tuy nhiên, chúng mình cần một ít chi phí để duy trì website đồng thời tạo thêm nhiều nội dung có giá trị hơn, đôi khi trong quá trình truy cập website sẽ xuất hiện một vài quảng cáo. Hy vọng các bạn ủng hộ và thông cảm giúp chúng mình.
